
Using modules with MPICH-G2 (and "loose ends")

Using modules with MPICH-G2 (and "loose ends")

Johnny Chang

johnny@nas.nasa.gov

July 9, 2001
NASA Ames Research Center, M/S 258-6

Moffett Field, CA 94035, USA

NAS Technical Report NAS-01-013
Last Modified: November 19, 2001

Table of Contents

● Abstract
● Prerequisites
● Background
● Introduction
● Rich Environment
● Experiments with module.csh
● (jobtype=single)
● EXAMPLES
● Summary
● Appendices

Abstract

A new approach to running complex, distributed MPI jobs using the MPICH-G2 library is described. This approach allows the
user to switch between different versions of compilers, system libraries, MPI libraries, etc. via the "module" command. The
key idea is a departure from the prescribed "(jobtype=mpi)" approach to running distributed MPI jobs. The new method
requires the user to provide a script that will be run as the "executable" with the "(jobtype=single)" RSL attribute. The major
advantage of the proposed method is to enable users to decide in their own script what modules, environment, etc. they would
like to have in running their job.

Prerequisites

This document is intended for application developers and users who want to run complex, distributed MPI jobs across two or
more machines. It assumes the reader is familiar with Unix and the basics of Globus as expressed in the Globus Quick Start
Guide.

http://www.nas.nasa.gov/~johnny/modules.html (1 of 29) [2/4/2002 4:35:37 PM]

mailto:johnny@nas.nasa.gov
http://www.hpclab.niu.edu/mpi/
http://www-unix.mcs.anl.gov/mpi/
http://www.ugu.com/sui/ugu/show?help.beginners
http://www.globus.org/
http://www.globus.org/toolkit/documentation/
http://www.globus.org/toolkit/documentation/

Using modules with MPICH-G2 (and "loose ends")

Background

In mid-April 2001, Nick Karonis (karonis@olympus.cs.niu.edu) discovered that a bug in SGI's implementation of mpi causes
some codes to hang. This particular bug was fixed in newer releases of the mpt module (mpt.1.4.0.2 and higher). The question
then arose as to how one would go about using modules with Globus/MPICH-G2 (http://www.hpclab.niu.edu/mpi/). One
solution, implemented by Judith Utley (utley@marcy.nas.nasa.gov), is to hard-wire the newer mpt module into all MPICH-G2
jobs. Better solutions that do not rely on a particular hard-wiring of modules are being contemplated.

This is an important problem because the ability for a user to switch between modules is crucial for a wide variety of reasons.
For example, some codes run on older modules but not on newer ones or vice versa. As modules on a system are updated,
users may need to switch between modules to assess the impact, if any, of the change. Users may need to switch between
modules to determine why a code that used to run a year ago, now behaves differently. These are just a few of the many
reasons why various versions of modules are available on the system at any given time. This paper describes a solution that
any IPG user could use right away that would not rely on any future "fix" to the Globus middleware or tools or services
derived thereof.

This step-by-step description is incremental in nature and touches upon a number of techniques that I've found useful while
learning to use the IPG. They form the "loose ends" that I've chosen to include in this document. Readers can skip to the
solution for using modules with MPICH-G2 by clicking here.

Introduction

When a user logs into a machine at NAS (NASA Advanced Supercomputing division), a rich environment (paths, aliases,
environment variables, etc.) is already pre-defined to provide easy accessibility to Unix commands. This facility is replicated
in jobs submitted to PBS. That is, batch jobs enjoy much of the same computing environment (and much more) as interactive
jobs (run at the command prompt). Jobs submitted to Globus, on the other hand, have almost a non-existent environment. Even
a simple 'ls' command to list files requires some knowledge of where (which directory) the command resides or some "trick" to
provide an instantaneous environment to process the command. This was a design issue and some email discussion along this
issue is attached in Appendix B.2 . Globus provides no mechanism for using modules currently. Users who want to use
modules will have to do so in their own scripts.

Rich Environment

The rich environment that users have become accustomed to is completely due to four files that are executed (source'd) when a
user logs in, or when a PBS batch job is run, and they are (for the C shell user):

/etc/cshrc
$HOME/.cshrc
/usr/local/lib/init/cshrc.global
$HOME/.login

The cshrc.global file is source'd from the user's $HOME/.cshrc file unless they have explicitly commented this out. Similar
files exist for users of other shells.

The "module" command, which allows users to load/switch modules is (for me)

evelyn:/u/johnny> which module
module: aliased to /usr/bsd/logger -i -p local4.notice "module !*" ;

http://www.nas.nasa.gov/~johnny/modules.html (2 of 29) [2/4/2002 4:35:37 PM]

http://www.hpclab.niu.edu/mpi/

Using modules with MPICH-G2 (and "loose ends")

eval `/opt/modules/modules/bin/modulecmd tcsh !*`

and this alias is defined in /opt/modules/modules/init/csh (or /opt/modules/modules/init/tcsh) which is source'd from both
/etc/cshrc *and* /usr/local/lib/init/cshrc.global (again, similar files exist for users of other shells).

This is the first piece of the puzzle. Namely, if the 'module' command is not enabled, the user will need to explicitly have the
line

source /opt/modules/modules/init/csh

in their script before using modules. It doesn't hurt to have this line in the script even if the module command is already
enabled. This method of enabling the module command is universal across all the SGI Origins and Cray computers in the
NASA IPG .

To see the current setup with regards to modules for Globus jobs, consider the following script called 'module.csh':

--
#! /bin/csh
set verbose
sleep 100 ! sleep for 100 seconds
module list
which mpirun
--

The first line starts up a C shell and sources the $HOME/.cshrc file. The second line (set verbose) causes all subsequent
commands that are run to be echo'd to stderr. The third line (sleep 100) is one that I use a lot when I want to see what PBS
script was created by the Globus-to-PBS interface. More on this later. The fourth line lists what modules, if any, are loaded for
this job (and it will also serve as a test for whether the 'module' command works or not).

Experiments with module.csh

First, a Globus job submitted to evelyn.nas.nasa.gov's jobmanager-fork:

--
evelyn:/u/johnny> globusrun -s -r evelyn '&(executable=/u/johnny/module.csh)'
sleep 100 ! sleep for 100 seconds
mpirun not in /usr/nas/bin /usr/bin /usr/sbin /usr/bin/X11 /usr/local/pkg/pgi/sgi/bin
/usr/local/pkg/pgi/bin /usr/prg/bin /usr/bsd /usr/local/pbs/bin /usr/local/pbs/sbin
/usr/local/bin /usr/java/bin /usr/etc /usr/prg/pkg/globus/1.1.3/tools/mips-sgi-
irix6.5/bin
/etc .
module list
No Modulefiles Currently Loaded.
setenv _MODULESBEGINENV_ /u/johnny/.modulesbeginenv ;
which mpirun
--

Result: No modules loaded and the mpirun command is not found in my path. Interestingly, the 'module' command is enabled
even though no modules are loaded. This is because /etc/cshrc was not run and so no modules are loaded, but

http://www.nas.nasa.gov/~johnny/modules.html (3 of 29) [2/4/2002 4:35:37 PM]

http://www.ipg.nasa.gov/

Using modules with MPICH-G2 (and "loose ends")

/opt/modules/modules/init/csh was source'd from /usr/local/lib/init/cshrc.global. (Note: stdout and stderr output are mixed
when returned to the screen.)

Second, a Globus job to hopper.nas.nasa.gov's jobmanager-pbs:

evelyn:/u/johnny> globusrun -s -r hopper '&(executable=/lc/johnny/module.csh)'
sleep 100 ! sleep for 100 seconds
module list
Currently Loaded Modulefiles:
 1) modules 2) MIPSpro 3) mpt 4) scsl

which mpirun

<*motd snipped*>

[1] 1091589 ! executable run in background, see PBS script below.
/opt/mpt/mpt/usr/bin/mpirun
[1] Done /lc/johnny/module.csh < /dev/null
logout

<*PBS Job resource summary snipped*>

Result: The default modules are loaded (PBS jobs automatically execute /etc/cshrc at start-up) and the mpirun from the
default mpt module is accessed from the script.

I've often found it useful to look at the PBS script that is generated by the Globus-to-PBS interface
/globus/deploy/libexec/globus-script-pbs-submit. One can view the PBS script when the PBS job id is known. This is the
reason I insert sleep commands in my script -- to give me enough time to execute the following two commands:

turing:/cluster/hopper/PBS/mom_priv/jobs> qstat -au johnny

fermi.nas.nasa.gov: NAS Origin 2000 Cluster Frontend

 Tue Jul 10 17:26:55 2001

Server reports 1 job total (R:1 Q:0 H:0 W:0 T:0 E:0)
 hopper: 1/30 nodes used, 58 CPU/14210mb free, load 56.18 (R:1 T:0 E:0)

 Req'd Req'd Elap
Job ID Username Queue Jobname SessID TSK Memory Nds wallt S wallt
------------ -------- -------- ---------- ------- --- ------- --- ----- - -----
26023.fermi johnny submit STDIN 810567 2 490mb 1 00:05 R 00:00

The PBS job id is 26023 and the status of the job is Running (2nd to last column). Then, in the directory shown on the
command prompt, one can view one's own PBS scripts once the PBS job has started running (note: 'ls' will not execute here
since the directory's permission is 751)

http://www.nas.nasa.gov/~johnny/modules.html (4 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

turing:/cluster/hopper/PBS/mom_priv/jobs> cat 26023.fermi.SC
PBS batch job script built by Globus job manager

#PBS -o /u/johnny/.globus/.gass_cache/globus_gass_cache_994811212
#PBS -e /u/johnny/.globus/.gass_cache/globus_gass_cache_994811213
#PBS -l ncpus=1
#PBS -v GLOBUS_GRAM_MYJOB_CONTACT=URLx-nexus://hopper.nas.nasa.gov:24803/, \
X509_CERT_DIR=/usr/prg/pkg/globus/1.1.3/.deploy/share/certificates, \
GLOBUS_GRAM_JOB_CONTACT=https://hopper.nas.nasa.gov:24802/810796/994811209/, \
GLOBUS_DEPLOY_PATH=/usr/prg/pkg/globus/1.1.3/.deploy, \
GLOBUS_INSTALL_PATH=/usr/prg/pkg/globus/1.1.3, \
X509_USER_PROXY=/u/johnny/.globus/.gass_cache/globus_gass_cache_994811211,

Changing to directory as requested by user

cd /u/johnny

Executing job as requested by user

/lc/johnny/module.csh < /dev/null &
wait

More interestingly, when the (jobtype=mpi) parameter is added to the RSL, one gets a PBS script that contains:

turing:/cluster/hopper/PBS/mom_priv/jobs> cat 26282.fermi.SC
PBS batch job script built by Globus job manager

#PBS -o /u/johnny/.globus/.gass_cache/globus_gass_cache_994885658
#PBS -e /u/johnny/.globus/.gass_cache/globus_gass_cache_994885659
#PBS -l ncpus=1
#PBS -v GLOBUS_GRAM_MYJOB_CONTACT=URLx-nexus://hopper.nas.nasa.gov:41340/, \
X509_CERT_DIR=/usr/prg/pkg/globus/1.1.3/.deploy/share/certificates, \
GLOBUS_GRAM_JOB_CONTACT=https://hopper.nas.nasa.gov:41339/1106709/994885655/,\
GLOBUS_DEPLOY_PATH=/usr/prg/pkg/globus/1.1.3/.deploy, \
GLOBUS_INSTALL_PATH=/usr/prg/pkg/globus/1.1.3, \
X509_USER_PROXY=/u/johnny/.globus/.gass_cache/globus_gass_cache_994885657,

Changing to directory as requested by user

cd /u/johnny

Executing job as requested by user

module load mpt.new
module swap mpt mpt.new
/opt/mpt/mpt.new/usr/bin/mpirun -np 1 /lc/johnny/module.csh < /dev/null

The last line of the PBS script is the *wrong* way to run a user script (module.csh), but this example shows three points:

http://www.nas.nasa.gov/~johnny/modules.html (5 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

1. the addition of (jobtype=mpi) into the RSL triggers a hard-wired load and swap to the mpt.new module as implemented
by Judith Utley,

2. the 'executable' module.csh is run with a hard-wired mpirun command which is the wrong usage for running user
scripts, and

3. the actual version of mpirun that is being used in the module.csh script is /usr/bin/mpirun (which differs from the
mpirun in both the mpt and the mpt.new modules). This last point can be seen by running the experiment and looking
for the output to the 'which mpirun' command (left as an exercise to the reader). The reason for this is somewhat
obscure, but it has to do with the fact that SGI's mpirun command calls the array services library, which, in turn,
clobbers the user's PATH environment and replaces it with: "/usr/sbin:/usr/bsd:/sbin:/usr/bin:/usr/bin/X11:". The
processes started by mpirun inherit this path, and within the module.csh script, the only mpirun that is found by the
'which mpirun' command is the one under /usr/bin.

These three experiments show considerable variability in which (and whether or not) modules are loaded, and which (if any)
version of mpirun is accessed depending on how the Globus job is run. The major advantage of the method proposed in this
paper is to remove this variability by having the user decide in their own script what modules, environment, etc. they
would like to have in running their job. Once this shell script is written, and the intention is to have it run as the executable
in a Globus job, the only appropriate jobtype to use in the RSL is 'single'. This is the second piece of the puzzle.

(jobtype=single)

Turning now towards running distributed MPI jobs on 2 (or more machines) with MPICH-G2, the main question is whether or
not message passing between different machines using MPICH-G2 is possible with (jobtype=single). From a historical
perspective, Globus jobs using MPICH-G did not specify a 'jobtype' parameter and thus defaulted to (jobtype=multiple). With
MPICH-G2, the RSL created by the mpirun script from the appropriate MPICH-G2 directory used a (jobtype=mpi) RSL
parameter.

The different 'jobtypes' result in different ways that the MPI job is run. With (jobtype=multiple) the MPI job is run as
(assuming no stdin):

path_to_executable/mpi_executable < /dev/null &
path_to_executable/mpi_executable < /dev/null &
path_to_executable/mpi_executable < /dev/null &
 ...
wait

The number of occurrences of mpi_executable (in the batch script) is determined by the 'count' parameter in the RSL. When
the MPI job is run across multiple hosts, a similar repeating pattern of the mpi_executable appears in the batch script for each
subjob (the number of repetitions is determined by the 'count' parameter in each subjob).

With (jobtype=mpi) the MPI job is run as (again, assuming no stdin):

module load mpt.new
module swap mpt mpt.new
/opt/mpt/mpt.new/usr/bin/mpirun -np count_parameter path_to_executable/
mpi_executable < /dev/null

That is, the NAS hard-wired path to the vendor's new mpirun is used to run mpi_executable.

http://www.nas.nasa.gov/~johnny/modules.html (6 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

With the proposed (jobtype=single) way of running MPICH-G2 jobs via a user script, the job is run as (assuming no stdin):

path_to_user_script/user_script < /dev/null

This is fine for an MPI job run out of a single user script on a single host. The question then is how one runs a distributed MPI
job across several hosts. The answer can be found by looking at the RSL generated by the mpirun script in either the MPICH-
G or MPICH-G2 directories. Reproduced here is an example taken from my Globus user tutorial.

evelyn% cat hello_duroc.rsl
+
(&(resourceManagerContact="evelyn.nas.nasa.gov")
 (count=4)
 (jobtype=mpi)
 (label="subjob 0")
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 0))
 (directory="/u/johnny/duroc")
 (executable="/u/johnny/duroc/hello_mpichg")
)
(&(resourceManagerContact="turing.nas.nasa.gov")
 (count=6)
 (jobtype=mpi)
 (label="subjob 4")
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 1))
 (directory="/u/johnny/duroc")
 (executable="/u/johnny/duroc/hello_mpichg")
)

This RSL is used to run a simple "Hello World" MPI program across evelyn and turing, using 4 processes on evelyn and 6
processes on turing. The only differences between the MPICH-G and MPICH-G2 RSLs are the greatly shortened
resourceManagerContact string in the latter version and the previously alluded to (jobtype=mpi) RSL parameter. The key
ingredient for the coordination and communication across different hosts is the GLOBUS_DUROC_SUBJOB_INDEX
environment. The label parameter is superfluous (but may be useful in interpreting error messages which refer to subjobs by
their label). This key ingredient is the third and final piece of the puzzle.

The above RSL will run an MPI job with a total number of 10 processes (not counting the shepherd processes). The four
processes associated with GLOBUS_DUROC_SUBJOB_INDEX 0 will run with ranks 0 through 3, and the six processes
associated with GLOBUS_DUROC_SUBJOB_INDEX 1 will run with ranks 4 through 9. The order of the subjobs described
by each GRAM type RSL (&(......)) is unimportant, but the indices associated with the
GLOBUS_DUROC_SUBJOB_INDEX environment must run from 0 through the number of subjobs minus one.

In the section below, we look at several examples of running MPI jobs under MPICH-G2 with (jobtype=single). It must be
stressed that this is not the prescribed method for running MPICH-G2 jobs, therefore, several issues regarding correctness,
performance, and limitations will also be addressed. Subsequent to the completion of this document, I've learned from Nick
Karonis (see Appendix C.1) that the RSL attribute (jobtype=mpi) doesn't do anything to affect the MPI communication
performance. This RSL attribute only serves as a trigger to Globus to use the vendor-supplied mpirun to launch the application.
That's what is being done in the user script examples shown below.

EXAMPLES

Example 1: Hello World MPI program.

http://www.nas.nasa.gov/~johnny/modules.html (7 of 29) [2/4/2002 4:35:37 PM]

http://www.nas.nasa.gov/Groups/SciCon/Tutorials/globus_user/
http://www.hpclab.niu.edu/mpi/

Using modules with MPICH-G2 (and "loose ends")

For pedagogical reasons, I've included here all the necessary parts for running my MPI version of the "Hello World" program
using scripts.

evelyn:/u/johnny/duroc/mpich-g2> cat hello_mpi.f
 program hello_mpi
! A basic "Hello World" MPI program intended to demonstrate how to
! execute an MPI program under Globus on the NAS IPG
 include "mpif.h"
 integer date_time(8)
 character(len=10) big_ben(3), hostname
 call MPI_INIT(ierr)
 call date_and_time(big_ben(1), big_ben(2), big_ben(3), date_time)
 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
 call gethostname(hostname)
 print *,'Process #', myid, 'of', numprocs, 'at time: ',
 & big_ben(1), big_ben(2),' on host: ',trim(adjustl(hostname))
 call MPI_FINALIZE(ierr)
 end

The gethostname routine is a Fortran-to-C interface that uses the well-known C function call by the same name:

evelyn:/u/johnny/duroc/mpich-g2> cat ftoc.c
void gethostname_(char *hostname)
{
 #include
 gethostname(hostname, 10);
 return;
}

The compilation and linking using the MPICH-G2-provided compiler scripts (which I've aliased via environment variable
settings):

evelyn:/u/johnny/duroc/mpich-g2> echo $MPICC
/globus/mpich-n32/bin/mpicc
evelyn:/u/johnny/duroc/mpich-g2> echo $MPIF90
/globus/mpich-n32/bin/mpif90

is done via:

evelyn:/u/johnny/duroc/mpich-g2> $MPICC -c ftoc.c
evelyn:/u/johnny/duroc/mpich-g2> $MPIF90 -o hello_mpichg2 hello_mpi.f ftoc.o

The user script that enables the module command and loads the mpt module is:

evelyn:/u/johnny/duroc/mpich-g2> cat hello_mpichg2.scr
#! /bin/csh
source /opt/modules/modules/init/csh

http://www.nas.nasa.gov/~johnny/modules.html (8 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

module load mpt
mpirun -np $NP ./hello_mpichg2

It takes an environment variable (which I've called NP) that must be set in the RSL:

evelyn:/u/johnny/duroc/mpich-g2> cat hello_script.rsl
+
(&(resourceManagerContact="evelyn.nas.nasa.gov")
 (rsl_substitution = (nprocs "4"))
 (count=$(nprocs))
 (jobtype=single)
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 0) (NP $(nprocs)))
 (directory="/u/johnny/duroc/mpich-g2")
 (executable="/u/johnny/duroc/mpich-g2/hello_mpichg2.scr")
)
(&(resourceManagerContact="turing.nas.nasa.gov")
 (rsl_substitution = (nprocs "6"))
 (count=$(nprocs))
 (jobtype=single)
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 1) (NP $(nprocs)))
 (directory="/u/johnny/duroc/mpich-g2")
 (executable="/u/johnny/duroc/mpich-g2/hello_mpichg2.scr")
)

This RSL assumes that I have already setup the appropriate directory structure on evelyn and turing, and that I have the
appropriate scripts (made executable) and MPI executables in the correct locations on the two machines.

The Globus job is launched via:

evelyn:/u/johnny/duroc/mpich-g2> globusrun -s -f hello_script.rsl

with the result:

Job Limits not enabled: Job not found or not part of job
Job Limits not enabled: Job not found or not part of job
 Process # 4 of 10 at time: 20010709 145346.692 on host: turing
 Process # 5 of 10 at time: 20010709 145346.699 on host: turing
 Process # 6 of 10 at time: 20010709 145346.692 on host: turing
 Process # 8 of 10 at time: 20010709 145346.692 on host: turing
 Process # 7 of 10 at time: 20010709 145346.692 on host: turing
 Process # 9 of 10 at time: 20010709 145346.692 on host: turing
 Process # 0 of 10 at time: 20010709 145346.660 on host: evelyn
 Process # 1 of 10 at time: 20010709 145346.660 on host: evelyn
 Process # 2 of 10 at time: 20010709 145346.660 on host: evelyn
 Process # 3 of 10 at time: 20010709 145346.660 on host: evelyn

(Since the upgrade of the OS to IRIX 6.5.10f, there have been some error messages that presage the output, but they are
innocuous.)

The output shows the correct number of processes and rank running on evelyn and turing. The time stamp is in the form
YYYYMMDD HHMMSS.fractional_seconds. This example shows that the two subjobs are synchronized to start at the same

http://www.nas.nasa.gov/~johnny/modules.html (9 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

time (modulo a time zone change) on the MPI_INIT call. I have run this example many times, and occasionally, have seen an
approximately 5 minute delay between the time stamps on the two hosts. This is *not* due to the clocks on the two hosts going
out of sync, but appears to arise from some underlying communication layer which I do not yet understand. It is unrelated to
the (jobtype=single) RSL parameter since the same problem arises with (jobtype=mpi).

Example 2: ring example

This example uses the ring.c code from the MPICH-G2 website. The new wrinkle is that the executable and scripts all reside
on one machine, evelyn, and the goal is to run this MPI job across 3 machines: evelyn, turing, and rogallo. The user script
(ring.scr), executable (ring), and RSL (ring_script.rsl) all reside under evelyn:/u/johnny/duroc/mpich-g2. The script (ring.scr)
can be staged (or transferred) to turing and rogallo via the $(GLOBUS_GASS_URL)# prefix. The staged script will reside in
the .globus/.gass_cache directories on turing and rogallo for the duration of the job and will be be deleted automatically at the
end of the job.

The RSL is:

evelyn:/u/johnny/duroc/mpich-g2> cat ring_script.rsl
+
(&(resourceManagerContact="evelyn.nas.nasa.gov")
 (rsl_substitution=(nprocs "5"))
 (count=$(nprocs))
 (jobtype=single)
 (directory=$(HOME)/duroc/mpich-g2)
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 0) (NP $(nprocs)))
 (executable=$(HOME)/duroc/mpich-g2/ring.scr)
)
(&(resourceManagerContact="turing.nas.nasa.gov")
 (rsl_substitution=(nprocs "4"))
 (count=$(nprocs))
 (jobtype=single)
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 1) (NP $(nprocs)))
 (executable=$(GLOBUSRUN_GASS_URL)#$(HOME)/duroc/mpich-g2/ring.scr)
)
(&(resourceManagerContact="rogallo.larc.nasa.gov")
 (rsl_substitution=(nprocs "3"))
 (count=$(nprocs))
 (jobtype=single)
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 2) (NP $(nprocs)))
 (executable=$(GLOBUSRUN_GASS_URL)#$(HOME)/duroc/mpich-g2/ring.scr)
)

Notice that for the subjob to be run on evelyn there is a directory change to $HOME/duroc/mpich-g2, where my ring
executable resides. For the subjobs to be run on turing and rogallo, the ring.scr script will do a remote file transfer of the ring
executable and run from the defaulted $HOME directories.

The ring.scr script is:

evelyn:/u/johnny/duroc/mpich-g2> cat ring.scr
#! /bin/csh
source /opt/modules/modules/init/csh
module load mpt

http://www.nas.nasa.gov/~johnny/modules.html (10 of 29) [2/4/2002 4:35:37 PM]

http://www.hpclab.niu.edu/mpi/

Using modules with MPICH-G2 (and "loose ends")

if (`hostname` != "evelyn") then
 scp evelyn.nas.nasa.gov:duroc/mpich-g2/ring .
endif
mpirun -np $NP ./ring

In this example, the line "source /opt/modules/modules/init/csh" is crucial to enable the module command. It is not
automatically enabled for users accessing rogallo at the current time, and so sourcing $HOME/.cshrc (via #! /bin/csh) is not
sufficient for the module command, but is sufficient for all the other commands in the script. Another important, albeit subtle,
detail is the use of 'scp' in the file transfer. On rogallo, the 'scp' command is the GSI enabled version of 'scp', which means that
it does not require a password when a valid full proxy exists. When the subjob on rogallo starts, it receives a full proxy from
evelyn which remains valid for the duration of the job. On turing, the 'scp' command is not GSI enabled, and uses the rhosts or
/etc/hosts.equiv with RSA host authentication method to authenticate. Since turing-ec.nas.nasa.gov is in evelyn's
/etc/hosts.equiv file, the scp will also not require a password for file transfer. Lastly, one could have added (to ring.scr) the
deletion of the 'ring' executable at the end of the job when `hostname` != "evelyn". I have chosen to leave the 'ring' executable
behind to give one a warm and fuzzy feeling that everything is working as expected.

Execution of this job appears as:

evelyn:/u/johnny/duroc/mpich-g2> globusrun -s -f ring_script.rsl
Job Limits not enabled: Job not found or not part of job
Job Limits not enabled: Job not found or not part of job
Master: end of trip 1 of 1: after receiving passed_num=12 (should be =trip*numpr
ocs=12) from source=11

The passed_num=12 corresponds to the sum of 5, 4, and 3 processes run on evelyn, turing, and rogallo, respectively.

Example 3: Nick Karonis' root_of_problem.c and bad.c

As noted in the beginning of this document, Nick Karonis discovered a bug in SGI's implementation of MPI that caused some
codes to hang. The link to that email also leads to the two codes that he provided. The code "bad.c" reproduces the hang when
run using MPICH-G2 with settings procA = 1, procB = 2, but works with SGI's MPI independent of procA and procB settings.
This assertion cannot be verified now by running a Globus job with (jobtype=mpi) on the NAS machines because the mpt.new
module, which fixes the hang, has been hard-wired into (jobtype=mpi) jobs. However, with (jobtype=single) and running a
script as the executable, one can freely switch between modules and verify the assertion. One such script is given below.

The "root_of_problem.c" code differs from "bad.c" only in an MPI_Comm_dup function call (and another printf statement),
and mimics how MPICH-G2 implements the native MPI_Intercomm_create function call in the "bad.c" code. MPICH-G2
implements some MPI functions by calling one or more vendor-supplied MPI functions. This code will hang when run with
settings procA = 1, procB = 2 and using SGI's mpt.1.4.0.1 or *some* earlier modules (code fails/hangs with versions 1.4.0.1,
1.4.0.0, and 1.3.0.4, passes/runs with versions 1.3.0.0, 1.2.1.2, and 1.4.0.3).

As an aside, it is worth mentioning that the mpt module is used in three different phases. (1) During compilation/linking, the
MPI library is used to resolve all the MPI function calls, (2) When launching the MPI job with SGI's mpirun, the version of the
mpirun command invoked depends on which mpt module is loaded and, therefore, what is in the user path, and (3) During
runtime, the version of the MPI library accessed depends on which mpt module is loaded. SGI uses dynamic libraries which
are accessed during runtime as opposed to being statically compiled into the executable. It is only in the third phase that the
version of the loaded mpt module matters for creating the hang. But for practical purposes it is best to be consistent in using
the same modules for all three phases.

In this example, we will run both codes across evelyn and turing, with three processes on evelyn and two on turing. It turns out

http://www.nas.nasa.gov/~johnny/modules.html (11 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

that the processes with ranks 0, 1, and 2 all need to be on the same host to reproduce the hang. The user script (hang.scr) is:

--
#! /bin/csh
source /opt/modules/modules/init/csh
module load mpt.new

if (`hostname` != "evelyn") then
 scp evelyn.nas.nasa.gov:duroc/mpich-g2/bad .
 scp evelyn.nas.nasa.gov:duroc/mpich-g2/root_of_problem .
endif

mpirun -prefix "%@ " -np $NP ./bad
#mpirun -prefix "%@ " -np $NP ./root_of_problem

if (`hostname` != "evelyn") then
 rm -f bad root_of_problem
endif
--

To obtain the cases that hang, one loads mpt instead of mpt.new in the script.

WARNING: If you try running the cases that hang under MPICH-G2, remember to clean up the stray processes after
experimentation. The stray processes will continue to consume resources and rack up CPU time.

Note that I have commented out one of the mpirun commands. The current setup in MPICH-G2 does *not* allow running two
MPICH-G2-compiled executables out of the same script (in a serial fashion as in the script above). Attempts to run a second
MPI program out of the same script will encounter error messages of the type:

globus_duroc_barrier: aborting job!
globus_duroc_barrier: reason: our checkin was invalid!

It must be emphasized that this is a limitation inherent in MPICH-G2 and not in using (jobtype=single). The prescribed
(jobtype=mpi) method of running MPI jobs under MPICH-G2 allows running only one MPICH-G2 job in a single Globus job
submission. This limitation presents a problem for a class of problems that require running distributed, complex MPI jobs
involving pre- and/or post-processing, all of which might entail running two or more MPI jobs out of the same script. The key
to the solution is to realize that the limitation is present only in MPICH-G2 compiled executables, but not with native MPI. To
run the afore-mentioned "complex" problem, one would build the pre- and/or post-processing MPI executables with the native
MPI library, and the running of these parts of the script will be done on only one host (or more than one host as long as it is not
distributed across hosts in the MPICH-G2 sense). Presumably, the computation in the pre- and/or post-processing parts of the
job are less time-consuming and do not need to be run as a single code distributed across two or more hosts. More discussion
on this point will be presented in Example 4.

The last point to note about the user script above is the option given to mpirun which enables the output from the different
processes to be prefixed with a hostname. With a user script, one is free to make this choice, which would otherwise be lacking
with (jobtype=mpi).

The RSL used for this example is:

--
+

http://www.nas.nasa.gov/~johnny/modules.html (12 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

(&(resourceManagerContact="evelyn.nas.nasa.gov")
 (rsl_substitution=(nprocs "3"))
 (count=$(nprocs))
 (jobtype=single)
 (directory=$(HOME)/duroc/mpich-g2)
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 0) (NP $(nprocs)))
 (executable=$(HOME)/duroc/mpich-g2/hang.scr)
)
(&(resourceManagerContact="turing.nas.nasa.gov")
 (rsl_substitution=(nprocs "2"))
 (count=$(nprocs))
 (jobtype=single)
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 1) (NP $(nprocs)))
 (executable=$(GLOBUSRUN_GASS_URL)#$(HOME)/duroc/mpich-g2/hang.scr)
)
--

Example 4: "Real" code example

All three of the previous examples could have been run using the conventional MPICH-G2 approach with (jobtype=mpi). In
this example, we consider some issues that "real" MPI applications face which cannot be run satisfactorily in the conventional
(jobtype=mpi) approach.

Issues:

1. Need to allocate an extra processor for the shepherd process to avoid performance problems. Whenever an MPI job
with NP processes are run via "mpirun -np NP ...", there are actually NP+1 instances of the executable running. The
extra "shepherd" process consumes very little CPU time, but is capable of destroying any load balancing built into the
code. At a minimum, this implies that setting NP to the value in the (count=##) RSL parameter may be inadequate.
Additionally, on some time-sharing machines such as the Crays, the batch job daemons that monitor job resource usage
might kill the job if they catch NP+1 processes running when only NP were requested/allowed.

2. Even if the NP parameter in mpirun is set to count - 1, this would still be inadequate for hybrid MPI+OpenMP codes.
These codes take advantage of any multi-level parallelism present in the algorithm by using MPI for the (outer) course-
grained parallelism and OpenMP for the (inner) fine-grained parallelism. In this case, the value of NP will need to be
much less than the "count" RSL parameter which specifies the processor count resource.

3. "Real" MPI applications require input/data files. There are many ways that the filenames of these input/data files
become "associated" with those required for the application. For example,

 ln -s input_case47.dat fort.10

creates a symlink between a particular input/data file with an expected target. This could also be accomplished with the
'assign' command which might be adorned with other 'assign' attributes for controlling data conversion during I/O. The
input/data filenames could be renamed just prior to launching mpirun. Certainly, one could "prepare" all the filename
associations (via ln, assign, or mv commands) before launching the MPICH-G2 job, but that would be very restrictive,
especially for projects where many cases need to be run.

4. "Real" MPI applications involve substantial pre- and/or post-processing around the mpirun command. These go beyond
making sure that the requisite input/data files are in the right place (Issue 3). Again, these steps could be segregated

http://www.nas.nasa.gov/~johnny/modules.html (13 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

away from launching the MPICH-G2 job, but this would be a major design flaw. The directory where the execution
takes place could be volatile and exist only for the duration of the MPICH-G2 job.

5. The default set of modules (MIPSpro, mpt, and scsl) may be inadequate for certain applications at any given time. In
Example 3 above, the problem attributed to the mpt module only manifested itself in some versions of the mpt module.

These are just a few of the issues that could be resolved by using the method proposed in this document.

One of the main advantages of using MPICH-G2, which has heretofore not been mentioned except for a hint in the previous
example, is the ability to "tie" two or more applications together by passing data between the applications via MPI. The
applications in the two subjobs do not have to be the same. In fact, in the more general case using scripts and (jobtype=single),
the work done in the different subjob scripts could be completely different albeit related through the requisite passing of
information. In fact, even this last coupling is unnecessary except for a reason to couple and use MPICH-G2. The key to the
coupling is that codes compiled with the MPICH-G2 library will be synchronized at the MPI_INIT function call, and the
processor ranks are determined by the processor counts passed to mpirun in conjunction with the
GLOBUS_DUROC_SUBJOB_INDEX environment. If the script in one subjob begins to run before the other, it will run up to
the code compiled with the MPICH-G2 library and then stall and spin cycle at the MPI_INIT funtion call waiting for the other
subjob to reach its corresponding MPI_INIT function call. If the two subjobs are run on separate batch systems, some care in
choosing the maxWallTime resource must be exercised to allow for asynchronous job start times.

Example 5: NAS Parallel Benchmarks (NPB2.3)

In the previous examples, we looked at the issues of correctness and limitations accompanying the use of (jobtype=single) to
run MPICH-G2 jobs. In this example, we look at the performance issue. That is, whether jobs run slower when the jobtype
parameter is switched from mpi to single. For this, we examine the performance of some well-known NAS Parallel
Benchmarks (NPB) run under different scenarios.

The three NPB's chosen for this study are:

● bt: linear equations for implicit scheme in Navier-Stokes equation
● lu: LU decomposition for Navier-Stokes equation
● sp: linear equations for Navier-Stokes equation

They can each be compiled and run with different 'Classes'. Class A is the smallest case and class B mimics a medium size
problem. The number of processes required to run each benchmark is also built in at compilation time. Thus, lu.A.4
corresponds to the class A version of the lu benchmark run with 4 processes. Table 1 shows the timings for the three
benchmarks run as a single MPICH-G2 job with 4 CPUs on one host (jobtype=mpi) or split as two subjobs with 2 CPUs in
each subjob (2+2). The latter case was run with (jobtype=mpi) and with (jobtype=single), with both 2-CPU subjobs on the
same host (hopper or steger) or split between two hosts (2 CPUs on hopper and 2 CPUs on steger).

All experiments were run numerous times over a period of three weeks. The reported timings are averages of the 5 lowest
elapsed walltimes as reported by each benchmark, and, therefore, represent the best case scenarios that one could expect on
production machines. Both hopper and steger are SGI Origin 2000 machines containing 250 MHZ IP27 processors and are
located in the same machine room at NASA Ames Research Center.

The versions of the compiler and MPT (message passing toolkit) modules used in all the calculations for Table 1 correspond to
MIPSpro.7.3.1.1m and mpt.1.4.0.3, respectively. The compilation of all the executables used the MPICH-G2 provided script
/globus/mpich-64/bin/mpif77 and compiler options "-O2 -64".

Table 1: Timings on one host versus split between hopper and steger

http://www.nas.nasa.gov/~johnny/modules.html (14 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

 (elapsed times in seconds)

code one host one host one host hopper+steger hopper+steger
 (4) (2+2) (2+2) (2+2) (2+2)
 (mpi) (mpi) (single) (mpi) (single)

lu.A.4 270 282 282 281 281

sp.A.4 353 367 367 401 401

bt.A.4 651 655 655 655 655

The first, and most important, conclusion one infers from the data in Table 1 is that there is no performance penalty
asscociated with using (jobtype=single) instead of (jobtype=mpi). The average of the 5 lowest elapsed walltimes are identical
for the MPICH-G2 jobs run with either jobtype. Comparing the timings for the (2+2) split subjobs versus the unsplit case in
column 1, one sees a 4% increase in time for the split case in lu.A.4, less than 1% increase in bt.A.4, and for sp.A.4, there is
either a 4% increase when the subjobs are on the same host or 14% increase when the subjobs are on different hosts. From
these numbers, one can infer that, of the 3 benchmarks, bt.A.4 contains the least amount of communication (in a relative sense)
between processes of ranks 0 and 1 with those of ranks 2 and 3. Data for sp.A.4 shows the expected behaviour that the timings
increase when subjobs are split between hosts rather than being on the same host. Although not indicated in Table 1, the best
single host timings were obtained on hopper.

It is interesting to see how these timings change when the two subjobs are split between hosts that are geographically separated
at great distances. One 2-CPU subjob was run on hopper or steger on the West Coast and the other 2-CPU subjob was run on
rogallo or whitcomb on the East Coast.

The default compiler on rogallo/whitcomb is version MIPSpro.7.3.1.2m and the MPT module is the older mpt.1.2.1.0. The
newer mpt.1.4.0.3 module was not available on either rogallo or whitcomb. To verify that the older mpt module did not
contribute to any performance penalties on rogallo/whitcomb, the unsplit 4-CPU MPICH-G2 jobs were re-run on
rogallo/whitcomb. The timings for these runs are shown in column 1 of Table 2, and they show no performance degradations
in using the older mpt module. Rogallo/whitcomb are also Origin 2000 machines containing 250 MHZ IP27 processors, but
they are smaller machines. Rogallo contains 4 processors, whitcomb contains 16, while hopper and steger contain 64 and 256
processors, respectively.

Not surprisingly, the elapsed walltimes increase dramatically when the communication needs to go across large distances. The
increase in times for the best case scenarios are between 54% and 180%. In fact, there is quite a bit more scatter in the raw data
due in part to the unpredicability of the network traffic. Jobs on rogallo/whitcomb are not run on dedicated nodes and care
must be exercised to avoid interference from other jobs. Most of the data were collected when there were no other jobs running
on rogallo/whitcomb. There is the possibility to improve the quality of service provided by the network, but that investigation
is outside the scope of this work.

The important point to note again is that there is no performance penalty associated with using (jobtype=single) instead of
(jobtype=mpi).

Table 2: Timings on one host versus split between steger (or hopper) and
 whitcomb (or rogallo) (elapsed times in seconds)

code whitcomb steger+whitcomb steger+whitcomb
 (4) (2+2) (2+2)
 (mpi) (mpi) (single)

http://www.nas.nasa.gov/~johnny/modules.html (15 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

lu.A.4 268 412 412

sp.A.4 352 986 983

bt.A.4 652 1023 1016

Larger CPU experiments were run with Class B benchmarks. The results are shown in Table 3. Again, no performance penalty
is seen with using (jobtype=single). The most surprising, and as yet unexplained [*], result is the significantly larger timings
for bt.B.16 when the two subjobs are run on the same host as opposed to separate hosts. Similar to the Class A results, the
sp.B.16 benchmark incurs the greatest performance penalty when split between two separate hosts.

[*] The current thinking about this surprising result is that the communication pattern in the bt.B.16 benchmark "involves" the
shepherd processes to a larger extent (Table 4 shows that adding more processors to account for the shepherd processes
improves the performance of the one host 8+8 bt.B.16 results the most). Adding to this issue is the possibility that the system
sockets involved in the MPI communication between subjobs -- namely, the part that goes over TCP/IP -- might be busy doing
both a write and a read when the two 8 processor subjobs are on the same machine. When the job is split between two
machines, one half of the TCP communication is moved to a different machine (see Appendix C.1).

Table 3: Timings on one host versus split between hopper and steger
 (elapsed times in seconds)

code one host one host one host hopper+steger hopper+steger
 (16) (8+8) (8+8) (8+8) (8+8)
 (mpi) (mpi) (single) (mpi) (single)

lu.B.16 313 335 335 334 334

sp.B.16 355 411 411 520 520

bt.B.16 676 750 753 691 690

Finally, in Table 4, the effect of requesting extra CPUs for the shepherd processes on the runtimes is explored. Each subjob
contains its own shepherd. Comparing the timings in Table 4 with the corresponding ones in Table 3, we see that the
performance improvement could be as little as 1% to as much as 9% for the bt.B.16 benchmark run split on one host. The odd
man out is the lu.B.16 benchmark which actually shows a 1% performance degradation when run with extra CPUs and split on
one host. Generally, allocating extra CPUs for the shepherd processes helps the much larger CPU count jobs more than the
smaller CPU count jobs. On hopper/steger, allocating an extra node (2 CPUs) for each shepherd process when each subjob
requires only 8 CPUs provides a greater opportunity for processes to be scheduled on nodes that are further away from their
communicating partners and their private data. Instead of the 8 processes for each subjob being confined to a physically "tight"
8 CPU cluster, the extra node for the shepherd process provides opportunity for some communication and memory access to be
further apart.

Table 4: Timings for runs with scripts that account for shepherds
 (elapsed times in seconds)

code one host hopper+steger
 (8+8+2shepherds) (8+8+2shepherds)
 (single) (single)

lu.B.16 338 329

http://www.nas.nasa.gov/~johnny/modules.html (16 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

sp.B.16 391 499

bt.B.16 693 689

The RSL used to run the lu.B.16 benchmark in the last column of Table 4 is:

+
(& (resourceManagerContact="steger.nas.nasa.gov")
 (rsl_substitution = (nproc "9"))
 (count = $(nproc))
 (maxWallTime=15)
 (jobtype=single)
 (environment = (GLOBUS_DUROC_SUBJOB_INDEX 0) (NP $(nproc)))
 (executable = /path_to_user_script_on_steger/lu.B.16.shepherd.scr)
 (stdout = /path_to_stdout_file_on_steger)
 (stderr = /path_to_stderr_file_on_steger)
)
(& (resourceManagerContact="hopper.nas.nasa.gov")
 (rsl_substitution = (nproc "9"))
 (count = $(nproc))
 (maxWallTime=15)
 (jobtype=single)
 (environment = (GLOBUS_DUROC_SUBJOB_INDEX 1) (NP $(nproc)))
 (executable = /path_to_user_script_on_hopper/lu.B.16.shepherd.scr)
 (stdout = /path_to_stdout_file_on_hopper)
 (stderr = /path_to_stderr_file_on_hopper)
)

and the user script, lu.B.16.shepherd.scr, is:

#! /bin/csh
source /opt/modules/modules/init/csh
module load mpt.new
set numproc = `expr $NP - 1`
mpirun -np $numproc /path_to_executable/lu.B.16

Note that the 'count' RSL parameter is chosen to be 9 to account for the extra shepherd process in each subjob, and the user
script substracts that extra process out (numproc = 9 - 1 = 8) to start the mpirun with the correct number of processes.

Summary

The three key ingredients to using modules with MPICH-G2 are:

1. The 'executable' parameter in the RSL is a user-provided script which enables the module command by sourcing the
file:
/opt/modules/modules/init/csh -- for C shell
(equivalent files are available for tcsh, bash, ksh, or sh)

http://www.nas.nasa.gov/~johnny/modules.html (17 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

2. The 'jobtype' parameter must be 'single' to run a user script.

3. The 'environment' parameters GLOBUS_DUROC_SUBJOB_INDEX must be set for each subjob starting from 0 to the
number of subjobs minus 1.

Several issues regarding correctness, limitations, and performance associated with using (jobtype=single) instead of the
prescribed (jobtype=mpi) were addressed in the examples. The approach presented here is robust since it involves running a
user script as the executable.

Acknowledgment

I thank Ray Turney for helping me get started with running the NAS Parallel Benchmarks (NPB2.3) and both Samson Cheung
and Scott Emery for useful discussions on the NPB2.3 timing results.

Appendices

A.1

==
Subject: Re: request for OVERFLOW that demonstrates bug?
 Date: Wed, 18 Apr 2001 10:21:58 -0500
 From: "Nicholas T. Karonis" <karonis@olympus.cs.niu.edu>
 To: <recipient_list_omitted>

we have figured why testg2.F (and therefore overflow) hangs when you use
mpich-g2 but why it doesn't hang when using sgi's mpi. unfortunately, the
root of the problem is an error in sgi's implementation of mpi.

the code below (bad.c) is a distillation of the problem that reliably
reproduces the hang when using mpich-g2 and setting procA = 1; procB = 2;.
note that the code below always works (independent of procA,procB settings)
when using sgi's mpi.

-------- bad.c
#include <mpi.h>
#include <stdio.h>

/*
 * intended to be run with at least 3 procs
 */
int main(int argc, char ** argv)
{
 MPI_Comm new_intercomm;
 int my_rank;
 int rrank;
 int procA, procB;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

http://www.nas.nasa.gov/~johnny/modules.html (18 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

 printf("%d: Entering main()\n", my_rank); fflush(stdout);

 /* pick one of the following two settings for procA,procB */

 /* uncomment these and program will work */
 procA = 0; procB = 2;

 /* uncomment these and program will hang */
 /* procA = 1; procB = 2; */

 if (my_rank == procA || my_rank == procB)
 {
 if (my_rank == procA)
 {
 rrank = procB;
 }
 else
 {
 rrank = procA;
 }

 printf("%d: Calling MPI_Intercomm_create()\n", my_rank);
fflush(stdout);
 MPI_Intercomm_create(MPI_COMM_SELF, 0,
 MPI_COMM_WORLD, rrank,
 0, &new_intercomm);

 }

 printf("%d: Calling MPI_Finalize()\n", my_rank); fflush(stdout);
 MPI_Finalize();

} /* end main() */
-------- bad.c

this raises the question (the one you posed) why does the code above
work with sgi's mpi but not with mpich-g2? the answer is in mpich-g2's
implementation of MPI_Intercomm_create. mpich-g2 implements some mpi
functions by calling one or more vendor-supplied mpi functions.
for example, MPI_Intercomm_create is implemented by calling sgi's
MPI_Intercomm_create followed by a call to sgi's MPI_Comm_dup (the details
of _why_ mpich-g2 does this are too complicated to describe over email).

consider the code below (root_of_problem.c, a slight modification of the
example program above) which approximately models the calls mpich-g2 makes
to sgi's mpi in implementing MPI_Intercomm_create. if you compile and run
the program below using sgi's mpi with procA = 1; procB = 2; i think you will
find that it will hang.

-------- root_of_problem.c
#include <mpi.h>
#include <stdio.h>

/*

http://www.nas.nasa.gov/~johnny/modules.html (19 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

 * intended to be run with at least 3 procs
 */
int main(int argc, char ** argv)
{
 MPI_Comm new_intercomm;
 MPI_Comm new_comm;
 int my_rank;
 int rrank;
 int procA, procB;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 printf("%d: Entering main()\n", my_rank); fflush(stdout);

 /* pick one of the following two settings for procA,procB */

 /* uncomment these and program will work */
 procA = 0; procB = 2;

 /* uncomment these and program will hang */
 /* procA = 1; procB = 2; */

 if (my_rank == procA || my_rank == procB)
 {
 if (my_rank == procA)
 {
 rrank = procB;
 }
 else
 {
 rrank = procA;
 }

 printf("%d: Calling MPI_Intercomm_create()\n", my_rank);
fflush(stdout);
 MPI_Intercomm_create(MPI_COMM_SELF, 0,
 MPI_COMM_WORLD, rrank,
 0, &new_intercomm);

 printf("%d: Calling MPI_Comm_dup()\n", my_rank); fflush(stdout);
 MPI_Comm_dup(new_intercomm, &new_comm);
 }

 printf("%d: Calling MPI_Finalize()\n", my_rank); fflush(stdout);
 MPI_Finalize();

} /* end main() */
-------- root_of_problem.c

unfortunately, there's not much that we can do in mpich-g2 to resolve this
problem ... certainly not in the short term. we would have to re-design that
portion of both the mpich and the globus2 device layers to "code around" this
error in sgi's implementation of mpi.

http://www.nas.nasa.gov/~johnny/modules.html (20 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

other possible alternatives are (a) modify overflow to avoid triggering
the problematic sgi mpi code and/or (b) petition sgi to correct their
implementation of mpi. i don't know how much 'influence' nasa and/or
the ipg has with sgi, but the later may be a reasonable alternative to
pursue.

i'm sorry that the news could not have been more hopeful. i know that
it would have been better to hear that you uncovered a bug in mpich-g2
that we have/would fix.

nick

==

A.2

==
Subject: solution may be as simple as an upgrade
 Date: Fri, 20 Apr 2001 16:55:10 -0500
 From: "Nicholas T. Karonis" <karonis@olympus.cs.niu.edu>
 To: <recipient_list_omitted>

there have been a couple of people at sgi that have looked at the
root_of_problem.c file i sent. it looks as though that this is a bug
that has been fixed ... you may need only upgrade to a later version of
sgi's mpi. here is what i've been told throughout the course of the day.

1. howard pritchard tells me that the bug was fixed as of MPT 1.4.0.2
 (he was able to reproduce the hang in MPT 1.4.0.1, but it passes with
 MPT 1.4.0.2). they are currently up to MPT 1.5.

2. bonita mcpherson contacted bron nelson and he ran root_of_problem
 on turing and found that it ran to completion when he used
 "module swap mpt mpt.1.4.0.3".

could you please try your testg2.F with mpich-g2, but making sure that you
are using sgi's MPT 1.4.0.2 or later? if that runs to completion, could you
then try overflow with MPT 1.4.0.2 or later?

please let me know how things go.

nick

==

B.1

==
The standard "trick" to provide an instantaneous PATH environment is to
cause $HOME/.cshrc (or $HOME/.profile) to run just prior to executing

http://www.nas.nasa.gov/~johnny/modules.html (21 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

the command(s) by using the syntax:

/bin/csh -c <command> (or /bin/sh -c <comand>)

One then only needs to remember that csh (or sh) is in /bin, and the
<command> can reside in any directory that is searched from the
instantaneous PATH environment.

Thus, while both the commands:

globus-job-run evelyn ls

and

globusrun -s -r evelyn '&(executable=ls)'

will return the error:

GRAM Job submission failed because the executable does not exist (error code 5)

either,

globus-job-run evelyn /bin/csh -c ls

or

globusrun -s -r evelyn '&(executable=/bin/csh)(arguments="-c ls")'

will produce the expected result (a listing of $HOME). Perhaps the
only unexpected aspect is that running /bin/env or /bin/printenv under
Globus on the NAS IPG machines shows that the PATH environment is
already defined. This is due to a modification of the Globus source
at NAS that invokes $HOME/.cshrc *after* the Globus job starts at the
target location at NAS. Prior to launching the Globus job, the executable
is searched only in $HOME if no path (relative or absolute) to the
executable is provided. See the Globus Quick Start Guide for other

examples of using this method.

==

B.2

==
Subject: Re: [Globus-discuss] Interesting Problem
 Date: Thu, 06 Sep 2001 11:13:11 -0500
 From: Steve Tuecke <tuecke@mcs.anl.gov>
 To: Allen Holtz <Allen.Holtz@grc.nasa.gov>
 CC: discuss@globus.org

The GRAM services does not source your local dot files. This was a very
conscious design choice, for the following reasons:

http://www.nas.nasa.gov/~johnny/modules.html (22 of 29) [2/4/2002 4:35:37 PM]

http://www.globus.org/toolkit/documentation/

Using modules with MPICH-G2 (and "loose ends")

 * Starting a shell, sourcing user environments, etc add significant
overhead to job startup path. Many applications do not require this. If
you want things run under a normal shell environment you can build this
yourself as appropriate. But you don't want to impose this on all jobs.

 * Much of the point of GRAM is to not require users to have to customize
each and every machine to which they submit jobs. So the base assumption
is that you have no assumed local environment, and its up to the submitting
job to build up the environment it needs. Various hooks are supplied with
GRAM to help you bootstrap up, such as RSL variable that you can use in
your submission to find the local globus install path
(GLOBUS_INSTALL_PATH), a script (globus-sh-tools) that you can source to
get full paths for a bunch of common programs, etc. I'm sure there is much
more that could be done to improve this, though we have no specific plans
at the moment.

 * The whole model of assuming a shell with user dot files breaks down
with some scheduling systems, and some resource setups.

-Steve

At 10:21 AM 9/6/2001, Allen Holtz wrote:
>Hi,
>
> We've got a user here who is trying to run gsincftp from
>a Globus submission. Every time he tries to run the job it
>fails because gsincftp cannot be found. It appears that
>Globus is not obtaining the PATH environment variable. Our
>job manager is LSF.
>
> When I submit a job, say "printenv," directly to LSF I get
>back several environment variables including the PATH variable.
>When I submit the job using Globus there are several environment
>variables that are not set, including PATH. So this leads me
>to believe that somehow our login scripts are not run when we
>submit the job through Globus. Has anyone else run into this
>problem?
>
>Thanks,
>
>Allen
>--
>Allen Holtz
>Phone: (216)433-6005
>NASA Glenn Research Center
>21000 Brookpark Road
>Cleveland, OH 44135

--

Subject: Re: [Globus-discuss] Interesting Problem
 Date: Thu, 06 Sep 2001 12:29:20 -0400
 From: Gabriel Mateescu <gabriel.mateescu@nrc.ca>

http://www.nas.nasa.gov/~johnny/modules.html (23 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

Organization: NRC
 To: Allen Holtz <Allen.Holtz@grc.nasa.gov>
 CC: discuss@globus.org

<initiating email in the thread snipped>

It appears that globus-jobmanager only sets up $HOME
and $LOGNAME, without creating a login shell for
the user, which is probably a design decision.

One can set the user environment, though. For example,
one can issue

% globus-job-run <host_name> /bin/csh -c "source .cshrc; printenv"

Gabriel

--

Subject: Re: [Globus-discuss] Interesting Problem
 Date: Thu, 06 Sep 2001 14:18:35 -0500
 From: Doru Marcusiu <marcusiu@ncsa.uiuc.edu>
 To: Allen Holtz <Allen.Holtz@grc.nasa.gov>
 CC: <recipient_list_omitted>

Allen,

The environment for an LSF batch job is passed on from the environment from
which the job was submitted. In your case, once you logged on and your
.cshrc or .profile files were executed then your PATH variable was properly
set. Then when you submitted a job directly to LSF from within that same
shell then the batch job will inherit the PATH variable as it was set for
you in your submitting shell.

Globus doesn't execute your local startup files for your batch jobs. AT
NCSA we suggest to our users that they always submit shell scripts as there
batch jobs. Then, within the shell script one can execute any appropriate
startup files such as .cshrc or .profile to obtain the desirable
environment for their batch job.

<initiating email in the thread snipped>

==

C.1

==
Subject: Re: mpich-g2 questions
 Date: Sat, 10 Nov 2001 06:21:21 -0600

http://www.nas.nasa.gov/~johnny/modules.html (24 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

 From: "Nicholas T. Karonis"
 To: Johnny Chang
 CC: karonis@niu.edu, lisotta, niggley, toonen@mcs.anl.gov

johnny,

when you split your 16-node rsl job into two 8-node subjobs then any
message that goes from a proc in one subjob to a proc in the other subjob
is forced to use tcp communication over sockets. this is true if the two
subjobs run on the same machine or if they're on different machines. as an
aside, although not directly related to your questions, when mpich-g2 is
configured with an mpi flavor of globus (as i think the mpich-g2 you are
using is) then messages that go from one proc to another within the same
subjob use the vendor-supplied mpi, in your case sgi's mpi, for message
passing.

i'm not familiar with the communication pattern of the bt.B.16 benchmark,
but assuming that there is some communication between the processes in your
different subjobs, it _may_ be the case that the sgi you're running on takes
a performance hit when there's a lot of intra-machine tcp communication and
a performs better when 1/2 of the tcp communication is moved to a different
machine. it _may_ be possible (again, not knowing how much nor the pattern
of the messaging) that when you run on a single machine that you're having
to share system socket resources to the point that you're paying some
overhead.

we typically advise our users to place all the jobs that run on a
single machine into a single subjob for optimal performance.

to answer your (jobtype=mpi) vs (jobtype=single) question, when
you place (jobtype=mpi) into your rsl you are telling globus to
launch your app using the vendor's mpirun command, which is essentially
what you're doing when you say (jobtype=single) and using your own
script to sgi-mpirun your app. (jobtype=mpi) doesn't do anything
to affect communication performance ... it only serves as a trigger
to globus to use vendor-mpirun to launch the app.

nick

Johnny Chang writes:
>Hi Nick,
>
>I have been running some NAS Parallel Benchmarks (LU, BT, and SP)
>compiled with the mpich-g2 library on the SGI Origin 2000 machines
>at NASA Ames. One set of results has been rather surprising. For
>the bt.B.16 experiments (Class B, 16 processes) run as two subjobs
>with (count=8) in each subjob, I find that the elapsed times are about
>9% *larger* when the two subjobs are run on the same machine than
>when the two subjobs are run on separate machines (but in the same room).
>This result does not make any sense. I have made multiple runs and
>taken the average of the lowest 5 elapsed times. Even the raw data

http://www.nas.nasa.gov/~johnny/modules.html (25 of 29) [2/4/2002 4:35:37 PM]

Using modules with MPICH-G2 (and "loose ends")

>shows a performance penalty when the two subjobs are on the same
>machine. For lu.B.16, there is only a negligible performance penalty
>when run on only one machine as opposed to split. For sp.B.16, the
>results are as expected -- split across two machines elapsed times
>are longer than split across two subjobs on the same machine.
>
>Can this result be explained by some communication pathway that is
>taken when the two subjobs are on the same host?
>
>I have also found that I can run mpich-g2 distributed jobs with
>(jobtype=single) instead of (jobtype=mpi) in my RSL, if:
>
>(i) I provide a script as the executable, and the script runs the
>native SGI mpirun on an a.out that has been compiled with the mpich-g2
>library,
>
>(ii) I provide the correct GLOBUS_DUROC_SUBJOB_INDEX environments
>in my RSL.
>
>Comparing the elapsed runtimes of the benchmarks using (jobtype=mpi)
>with those of (jobtype=single) I find no performance penalty with
>the latter approach. However, I do not know if the (jobtype=mpi)
>parameter sets up some more efficient communication channel which
>would show up in cases I have not thought about. The latter approach,
>using (jobtype=single) and running a user-provided script has certain
>distinct advantages. Could you comment on this as well?
>
>Thanks in advance for any input.
>
>Sincerely,
>
>Johnny
>--
>~~
>Johnny Chang NASA Ames Research Center
>Scientific Consulting Mail Stop 258-6
>johnny@nas.nasa.gov (650) 604-4356 Moffett Field, CA 94035-1000
>~~
==

D.1

==
/* ring.c code from MPICH-G2 website (www.hpclab.niu.edu/mpi/) */
#include <stdio.h>
#include <mpi.h>

/* command line configurables */
int Ntrips; /* -t <ntrips> */
int Verbose; /* -v */

int parse_command_line_args(int argc, char **argv, int my_id)

http://www.nas.nasa.gov/~johnny/modules.html (26 of 29) [2/4/2002 4:35:38 PM]

Using modules with MPICH-G2 (and "loose ends")

{

 int i;
 int error;

 /* default values */
 Ntrips = 1;
 Verbose = 0;

 for (i = 1, error = 0; !error && i < argc; i ++)
 {
 if (!strcmp(argv[i], "-t"))
 {
 if (i + 1 < argc && (Ntrips = atoi(argv[i+1])) > 0)
 i ++;
 else
 error = 1;
 }
 else if (!strcmp(argv[i], "-v"))
 Verbose = 1;
 else
 error = 1;

 } /* endfor */

 if (error && !my_id)
 {
 /* only Master prints usage message */
 fprintf(stderr, "\n\tusage: %s {-t <ntrips>} {-v}\n\n", argv[0]);
 fprintf(stderr, "where\n\n");
 fprintf(stderr,
 "\t-t <ntrips>\t- Number of trips around the ring. "
 "Default value 1.\n");
 fprintf(stderr,
 "\t-v\t\t- Verbose. Master and all slaves log each step. \n");
 fprintf(stderr, "\t\t\t Default value is FALSE.\n\n");
 } /* endif */

 return error;

} /* end parse_command_line_args() */

main(int argc, char **argv)
{

 int numprocs, my_id, passed_num;
 int trip;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_id);

 if (parse_command_line_args(argc, argv, my_id))

http://www.nas.nasa.gov/~johnny/modules.html (27 of 29) [2/4/2002 4:35:38 PM]

Using modules with MPICH-G2 (and "loose ends")

 {
 MPI_Finalize();
 exit(1);
 } /* endif */

 if (Verbose)
 printf("my_id %d numprocs %d\n", my_id, numprocs);

 if (numprocs > 1)
 {
 if (my_id == 0)
 {
 /* I am the Master */

 passed_num = 0;

 for (trip = 1; trip <= Ntrips; trip ++)
 {
 passed_num ++;

 if (Verbose)
 printf("Master: starting trip %d of %d: "
 "before sending num=%d to dest=%d\n",
 trip, Ntrips, passed_num, 1);

 MPI_Send(&passed_num, /* buff */
 1, /* count */
 MPI_INT, /* type */
 1, /* dest */
 0, /* tag */
 MPI_COMM_WORLD); /* comm */

 if (Verbose)
 printf("Master: inside trip %d of %d: "
 "before receiving from source=%d\n",
 trip, Ntrips, numprocs-1);

 MPI_Recv(&passed_num, /* buff */
 1, /* count */
 MPI_INT, /* type */
 numprocs-1, /* source */
 0, /* tag */
 MPI_COMM_WORLD, /* comm */
 &status); /* status */

 printf("Master: end of trip %d of %d: "
 "after receiving passed_num=%d "
 "(should be =trip*numprocs=%d) from source=%d\n",
 trip, Ntrips, passed_num, trip*numprocs, numprocs-1);
 } /* endfor */
 }
 else
 {

http://www.nas.nasa.gov/~johnny/modules.html (28 of 29) [2/4/2002 4:35:38 PM]

Using modules with MPICH-G2 (and "loose ends")

 /* I am a Slave */

 for (trip = 1; trip <= Ntrips; trip ++)
 {
 if (Verbose)
 printf("Slave %d: top of trip %d of %d: "
 "before receiving from source=%d\n",
 my_id, trip, Ntrips, my_id-1);

 MPI_Recv(&passed_num, /* buff */
 1, /* count */
 MPI_INT, /* type */
 my_id-1, /* source */
 0, /* tag */
 MPI_COMM_WORLD, /* comm */
 &status); /* status */

 if (Verbose)
 printf("Slave %d: inside trip %d of %d: "
 "after receiving passed_num=%d from source=%d\n",
 my_id, trip, Ntrips, passed_num, my_id-1);

 passed_num ++;

 if (Verbose)
 printf("Slave %d: inside trip %d of %d: "
 "before sending passed_num=%d to dest=%d\n",
 my_id, trip, Ntrips, passed_num, (my_id+1)%numprocs);

 MPI_Send(&passed_num, /* buff */
 1, /* count */
 MPI_INT, /* type */
 (my_id+1)%numprocs, /* dest */
 0, /* tag */
 MPI_COMM_WORLD); /* comm */

 if (Verbose)
 printf("Slave %d: bottom of trip %d of %d: "
 "after send to dest=%d\n",
 my_id, trip, Ntrips, (my_id+1)%numprocs);
 } /* endfor */
 } /* endif */
 }
 else
 printf("numprocs = %d, should be run with numprocs > 1\n", numprocs);

 MPI_Finalize();

} /* end main() */

==

http://www.nas.nasa.gov/~johnny/modules.html (29 of 29) [2/4/2002 4:35:38 PM]

	nasa.gov
	Using modules with MPICH-G2 (and "loose ends")

